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ON THE REGULARITY OF ONE-DIMENSIONAL ELASTIC*NAVES
IN AN INCOMPRESSIBLE ISOTROPIC MATERIAL

L.G. VOLKOV

Wave motion is considered in an incompressible isotropic material which is defined by
guasi-linear hyperbolic system of four equations for which two characteristic fields
are linearly degenerate in the sense of Lax. For the remaining characteristic
fields a singificant nonlinearity is assumed. The behavior of derivatives of soclu~-
tion is investigated along these two different types of characteristic fields. The
effect of the system nonlinearity shows itself in the unboundedness of derivatives
with the limited solution along the essentially nonlinear fields.

In the linear theory of elasticity the smoothness of input data implies the stability of
respective solutions. In nonlinear elasticity this effect is absent /1/.

It is shown in /2/ that when the system (of equations), which describes the motion of the
system, is truly hyperbolic in the narrow sense, and is actually nonlinear /3/ and in addit-
ion the input data have a compact carrier and a fairly small ¢? norm, then the solution be-
comes infinite in finite time. An example is constructed in /2/ of a classic material with
the guadratic function of the deformation energy, which is truly nonlinear, when the wave
front does not contain the main deformation direction. The question is posed of the validity
of these results in dependence of the true nonlinearity for one-dimensional elastic waves. A
wide class of materials exists, which are not truly nonlinear. To these belong the isotropic
incompressible materials, considered below.

1. The plane problem. The plane wave motion in incompressible elastic materials is
defined by the system of equations /4,5/
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where u, are displacements, Pe = GUa/0z are gradients of deformation, and Py is the constant
density in the undeformed state. For an isotropic material the function 3 of deformation
energy depends only on invariants of the deformation tensor for which

I=II=3+p?+p2=3+¢, =0

We shall consider the classical solutions of system (l.l1), replacing it by the equivalent
system of the first order

aUu oU du du.
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Let us investigate the solutions of system (1.2) for which ¢>0. We assume that there
exist functions X', 37, 2", (2’ = d%/dl), and that I’ >0, 2" >0 is forJ =(3, o). If ¢ = 20,7127,
b = 2p, (2" 4 2¢*2"), then the eigenvalues of the matrix A4 are

M==—1Vb Ay=—Va, Ay=17Va i =Vb (1.3)

From this follows that system (1.2) is hyperbolic in the narrow sense. We denote by L,ri=
1,2.3, 4, respectively, the left and right-hand sides of eigenvectors for which
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It follows from formulas (1.4) and (1.5) that the left~ and right-hand eigenvectors are norm-—
alized as follows:

L=l =1; Lr*=0, iskik=1,2234% (1.6)
— 1—
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The characteristic field generated by the i-th eigenvalue of the systemyhyperbolic in
the narrow sense, is called truly nonlinear in the Lax sense /6/, if the derivative A; in the
direction of the respective right-hand eigenvector r* does not vanish, i.e.

Dy (U, (D)) % 0 (1.8)

The system, hyperbolic in the narrow sense, is truly nonlinear if all of its character-.
istic fields are truly nonlinear. For (1.2} we have

Dy (U, 3 (U =0 {1.9)

Consequently, the characteristic fields generated by eigenvalues Ay and A; are linearly
degenerate in the Lax sense and for any function X of deformation energy system (1.2) cannot
be truly nonlinear. This shows that the method proposed in /2/ is applicable to the case con-
sidered here. Not withstanding this, for the limited 2" > 0 ensuring the true nonlinearity
for the first and third characteristic fields, as well as some requirements as to the initial
deformation, the solution of (1.2) may over a finite time become irregular (see Theorem 3.1
below). The linear degeneration of A, and A; provides some possibility for constructing a
classic solution (Theorem 3.2).

2. Construction of the evolutionary system. For initial conditions

v {(z,0) V10 (2)
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belonging to class ¢%, the solution of system (1.2) also belongs to class ¢* for all Z in some
fairly small time interval [0, T] /3/. Further consideration will be limited to this band in
the space (z, ?).

The systems of vectors {4}, and {r'} are linearly independent (this follows directly
from (1.4) and (1.5)) and together form a biorthogonal system (1.6), (1.7). This enables us
to express the gradient [J, in terms of the basis {ri} as follows:

4
Uy= 21 GLUHr

Denoting b w: {z, & = L U.~th component of U,, we use the representation (1.2) in the
g by wq(z Uy po; z
form of a system of evolutionary equationswith unknown functions w;
¢ 4
dw dw
FA+MCEN ==Y Y tun ) wrm (2.2)
=] =]
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Vi = —Cu
Cixm = Cxm (U) = L, (U) DA [U, r™ ()] r* )]

Differentiating the eguality ;4 = Ayl;, we obtain
DI, (U, ™ A (U) + 1 (Uy DA (U, ) = DA (U, ¥') L; (U) + MDA (U, 1)

Multiplying both sides by / (l/jy and taking into account the last of relations (2.2),
we obtain

DM(U,r)=cy, 1Ki<4
Then from the fourth of relations (2.2} and from (1.9} follows v, = y333 = 0. To find

the remaining Yum it is necessary to determine beforehand the coefficient ¢, using form-
ulas (2.2). After respective calculations we obtain

0:S() @

DAU,rm )=

SE/="22 @+ 4p + 2%, Q=4pT 2 +9)

For the coefficients corresponding to the first and fourth characteristic field, we have

€11y = Caq = Cryq = Caq1 = Cyqy == Cgyq == €43 = 2¢

= (2" + 43" + 2¢°T") (1 + By~

All remaining ¢y, 4y are zero,
For the other group

0 PR
DA =|__ RP|, P8, ReiE (- p)
0i 0

Cas1 = Cyg1 == Copq == Cg3( = Cy3; = Cgpy == Cggy == Cgqq == 2d

Catp == Ca1g == Cq13 == Capp = Cpgg = Cyq3 = Cpyy == C3qp = 2¢d
z’
(A4+a)VIFs

The remaining ¢sj €3 are zero.
From the fourth of relations (2.2) follows
T = Yo = 2¢

Then system (2.2) is transformed to the form

(2.3)
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Initial conditions of the evolutionary system are written as

Wi (2) = w; (z, 0) =L (Ug(x)) Uy’ (2), 1 =1, 2,3,4
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3. The behavior of derivatives of the solution of problem (1.2)- (2.1).
We set k=4 for i=1 and k=1 for =4  Let us consider (2.4) as a system for uy
and w, After integration of its characteristic equations

dz dw, a1 ] e 4
—d-t—'= M, T—-2c<w, 157 wzwk>, i 1,-!
we obtain
t
Zi (o, ) = oy +S7\,i(U(m(s, o) s)) ds (3.1
[}

t
w (e, ) =wi(z (@, 8), ) = wp (@0 ) {—w_w‘i(;g + S w' (2us) X Tf‘f‘;‘f? (%3 (@ss), ) d.s-}—l

t
Wy (04, £) == wy (Z4 (@40 1), £) =e€XP {S 2¢ [q (s (a4, 5) )] wy [21 (@4 8), 5] ds} y wER

From the analysis of these formulas follows the following theorem.

Theorem 3.1. Let us assume that solution U (z,f) of problem (1.2)— {2.1) is bounded
when 0tz R, ¢>0 and Z" () >0,I (3, ), i.e. the first and fourth character-
istic fields are truly nonlinear. If function p, (1) = w, (z; (2, 1), §) is bounded for g <t LT,

a; € R then
a) function wy; (o, f) is bounded when w; (et; ) >0
b) when wy (a;) < 0
T
Jas (@) [t < S wy (o, 5) —1?_;, {g [z (o, 8), s]} ds
8

There exists a finite time f, such that
Hm Jw; (o, 8) = oc, ¢, LT
oty

In case b) we have a gradient catastrophy in the smooth solution of problem (1.2), (2.1}
/3/.

We shall now investigate the behavior of w, and w; under the same assumptions.

Theorem 3.2. Let us assume that functions Wy () = Wiy (T3 (Ga 1), O and wy; () = wia {2z (2,
%), i =1,4 are bounded when 0 ¢ T. Then wy (2, 8) and w;{r, ) are bounded
when 0Lt T, if they are bounded for t=0.

Proof. From the second and third of equations (2.4) similarly to (3.1) we have

t
zi ot =oy +S7\-i(‘1(xi($<,s))ds (3.2)
]
w; (o, £) == w4 (3 (s 1), 2) = 0 (i, ) (i0 () +
t
S 03 {048) Vi, 1-1, 0 {0 [0 (T, ), L iy [ (054, 5) 5] wias (2 (04, 8) 8] ds}
k1]
t
wy (o, ¢) == w; [ (o4, 2), £] == exp (S (vans (g (=1 (@1, 8), 5)) X
0
wy (s (G 8, ) + Vina (g (2 (04, 8)s ) wa (T3 (4, 8), 5)) )
Denoting
2 (t) =sup|wi(z,2)], Zo=sup|wi(@)|yz=R, i=23 (3.3)
x x
from these we obtain the inegualities
( (3.4)

20 (t) < 2o+ Mz (s)ds, i=2,3
[}
where M is a constant which depends on £ and its derivatives up to third order, as well as on
the estimates for U (g, f), wy (), Wis () in the interval [0, T).

From (3.4) we obtain the inequality

2g () + 25 {) < (200 + 230) oxp (M) < {230 + Z30) ©XD (MT)
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This theorem shows that waves which correspond to the second and third characteristic
fields, behave nearly as linear and do not generate irregularities.

The author thanks B.L. Rozhdestvenskii and V.A. Tupchiev for the valuable remarks made
at the All-Union Seminar on Systems of Quasilinear Equations and their Application to Mech-
anics of a Continuous Medium.
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