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ON THE REGULARITY OF ONE-DIMENSIONAL ELASTIC WAVES 
IN AN INCOMPRESSIBLE ISOTROPIC MATERIAL* 

L.G. VOLKOV 

Wavemotionis consideredinan incompressible isotropic material which is defined by 
quasi-linear hyperbolic system of four equations for which two characteristic fields 
are linearly degenerate in the sense of Lax. For the remaining characteristic 
fields a singificant nonlinearity is assumed. The behavior of derivatives of solu- 
tion is investigated along these two different types of characteristic fields. The 
effect of the system nonlinearity shows itself in the unboundedness of derivatives 
with the limited solution along the essentially nonlinear fields. 

In the linear theory of elasticity the smoothness of input data implies the stability of 
respective solutions. In nonlinear elasticity this effect is absent /l/. 

It is shown in /2/ that when the system (of equations), which describes the motionofthe 
system, is truly hyperbolic in the narrow sense, and is actually nonlinear /3/ and in addit- 
ion the input data have a compact carrier and a fairly small Cz norm, then the solution be- 
comes infinite in finite time. An example is constructed in /2/ of a classic material with 
the quadratic function of the deformation energy, which is truly nonlinear, when the wave 
front does not contain the main deformation direction. The question is posed of the validity 
of these results in dependence of the true nonlinearity for one-dimensional elastic waves. A 
wide class of materials exists, which are not truly nonlinear. To these belong the isotropic 
incompressible materials, considered below. 

1. The plane problem. The plane wave motion in incompressible elastic materials is 
defined by the system of equations /4,5/ 

(1.1) 

where u= are displacements, Pa=aucdaz are gradients of deformation, and PO is the constant 
density in the undeformed state. For an isotropic material the function X of deformation 
energy depends only on invariants of the deformation tensor for which 

Z = ZZ = 3 + p12 + pza = 3 + 43, zzz s 0 

We shall consider the classical solutions of system (l-l), replacing it by the equivalent 
system of the first order 

(1.2) 

II v1 II II 0 0 Aa &II 

Let us investigate the solutions of system (1.2) for which q>O* We assume that there 
exist functions X', Z", X"‘,(Z' = &$/dZ), and that Z'>O, X'> 0 is forZE(3,oo). If a = 2p,-lx', 

b = 2p,-'(2' + 2q2Z”), then the eigenvalues of the matrix A are 

h, = - Ifi;, hz=-fi, h,=1/;;( n,=JfF (1.3) 

Prom this follows that system (1.2) is hyperbolic in the narrow sense. 
1, 2. 3, 4 , 

We denote by li,ri, i = 
respectively, the left and right-hand sides of eigenvectors for which 

(1.4) 

1 ?.5=*~l?~~-cIr;i,~~) 
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It follows from formulas (1.4) and (1.5) that the left- and right-hand eigenvectors are norm- 
alized as follows: 

lilt = liri = 1; ltrk = 0, ifk,i,k=l,2,3,4 (1.6) 

1llP = 111s = lpls = l&j ii= 0; 
l-b 

1,1( = - ( 
i--a 

3-l-b 
1212 = - 

l-ka (1.7) 

The characteristic field generated by the i-th eigenvalue of the system,hyperbolic in 
the narrow sense, is called truly nonlinear in the Lax sense /6/, if the derivative hi in the 
direction of the respective right-hand eigenvector r' does not vanish, i.e. 

Db (u, ri (U)) f0 (1.8) 

The system, hyperbolic in the narrow sense, is truly nonlinear if all of its character-. 
istic fields are truly nonlinear. For (1.2) we have 

I)&, (U, P*3 (U)) = 0 (1.9) 

Consequently, the characteristic fields generated by eigenvalues ha and h, axe linearly 
degenerate in the Lax sense and for any function E of deformation energy system (1.2) cannot 
be truly nonlinear. This shows that the method proposed in /2/ is applicable to the case con- 
sidered here. Not withstanding this, for the limited Z"'>O ensuring the true nonlinearity 
for the first and third characteristic fields, as well as some requirements as to the initial 
deformation, the solution of (1.2) may over a finite time become irregular (see Theorem 3.1 
below). The linear degeneration of h, and h, provides some possibility for constructing a 
classic solution (Theorem 3.2). 

2. Construction of the evolutionary system. For initial conditions 

(2.1) 

belonging to class cs, the solution of system (1.2) also belongs t,b class c2 for all sinsome 
fairly small time interval [O,TJ /3/. Further consideration will be limited to this band in 

the space (z, t). 
The systems of vectors (It)nr and {ri) are linearly independent (this follows directly 

from (1.4) and (1.5)) and together form a biorthogonal system (1.61, (1.7). This enables us 

to express the gradient u, in terms of the basis (r’} as follows: 

Uz=B (Wx)ri 

Denoting by UI~(Z, t} 5: l,U,-th component of U,, we use the representation (1.2) in the 

form of a system of evolutionary equationswithunknown functions wi 

(2.2) 

2%kus=-~~ cfkm --+$Q,,,, k#i, mpi 
WI- 1 
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Differentiating the equality &A = hilit we obtain 

Dli (U, r’) A (U) + li (U) DA (U, r’) = Dht (U, r’) lt (U) + AiDhi (UV r’) 

Multiplying both sides by ri (V, and taking into account the last of relations (2.21, 

we obtain 
Dhi (U, r’) s ciii, 1 Q i < 4 

Then from the fourth of relations (2.2) and from (1.9) follows yzza = ySsS = 0. To find 
the remaining Yikm it is necessary to determine beforehand the coefficient cikrn using form- 
ulas (2.2). After respective calculations we obtain 

0 1 s (~2) Q 

DA(U,r1$‘)= 
ta 

s b) . . . . “i . . . . . . _ . . . . . . . . . . --__. 
0: 

L 
s(p)+ (n + 4~ -t- 2~‘~)s Q = 4pax” (2 + q) 

For the coefficients corresponding to the first and fourth characteristic field, we have 

Cl11 = C, = Cl14 = Cd&l = C,,l = C*m = c,n = 2c 
c = (2’ + 4qZ” f 2pr,y (1 f by/s 

All remaining clti9 c4ij are zero. 
For the other group 

DA (U, re.3) E; JRP, P = 8pJ”, R - _q_;_. - $g (p? - pa 

c221 = cm1 = c224 = C33& = cas1 = cs21 = caI)4 = Cau = 2d 
c212 = c&q = cf$gj = CQlf = e, = cQ(* = C%,J = CQIB = 2qd 

d= F 
(1 -I” Q) m 

The remaining C2~ftC3fj are zero. 
From the fourth of relations (2.2) follows 

Ylll = Y&44 = 2c 

Then system (2.2) is transformed to the form 

9 + h2 (q (r, t)) $ - (Y212W -t Y2zrW4) w2 + YtrlSW% 

+ + k3 fP (5, $1) a% F = fYsrsu’l+ Y334W4) w3 + Yszr+!W4 

~+hl(q(s,t))~=-22e(w,‘--w,w, 
l+b ) 

Y224 =z Ys34 = - ++(l+ 
Tkfi l--a) a 1ta i 

Y213 = Y32r = - 

Initial conditions of the evolutionary system are written as 

tuiO (z) = wi (+, 0) = Zi (U,(z)) U,' (4, i = 1, 2, 3,4 

(2.3) 

(2.4) 
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3. 
We set 

The behavior of derivatives of the solution of probl.em (1.2)-- (2.1). 
k 24 for i= 1 and k= 1 for i =d. 

and w,. 
Let us consider 12.4) as a system for w1 

After integration of its characteristic equations 

dz 
dt= hi, 

i--1,4 

we obtain 

zi(ai,t)=at + hi (U(x(s, at)S))da s 
0 

wi taf , 4 = wi @ (at, 4,4 = wk (af, t) {+ 

13.1) 

wk(a4,t)~wk(x4(a~,t),t) =exp{~~C14(~f(~f.~)~)lWkISi(ait~~~~l~S}~ af E R 
0 

From the analysis of these formulas follows the following theorem. 

Theorem 3.1. Let us assume that solution U(Z, t) of problem (1.2)- (2.1) is bounded 
when O<t<T,x~R,q>o and Z"'(I)>0,1~(3,00), i.e. the first and fourth character- 
istic fields are truly nonlinear. 
at E R. then 

If function wk(t) = wk(zt (ai, t), t) is bounded for 0 <t< T, 

a) function wt (ai, t) is bounded when wI (ai) > 0 
b) when w1 (ai) (0 

There exists a finite time t* such that 

;$I wi (%t 8) I= 00, t* < T 

In case b) we have a gradient caiastrophy in the smooth solution of problem (1.21 , (2.1) 
/3/. 

We shall now investigate the behavior of w, and toa under the same assumptions. 

Theorem 3.2. Let us assume that functions 10~~ (t) = % (% (a,. t). t) e=dEols it) = lats@, h 
t), t), i = 1,4 are bounded when O< t< T. Then ro, (~9 t) and W,(z, tf are bounded 

when O<t<T, if they are bounded for t= 0. 

Proof. From the second and third of eguations (2.4) similarly to (3.1) we have 

xi tat, 4 = af + i Xf (~2 @i he 4) ds 
(3.2) 

wi(ai,t)=Wf (zr@(af,t),t)==6' (ai, t)(Wo@i) + 

s 
wi (ais) yi,i-ki+l {4 h @f, +sl wi-l Is* (ai, 4 4 Wt+l I% (af I 4 81 dsl 

0 
t 

wi (3, t I= wi bf (ai, 4, tl = exp hi (4 (xi @iI 4,s)) X 

Denoting 

z,(t)=TpIwt(t,t)I, ~fo=~uPplio(4h x~ R, i = z3 

from these we obtain the inequalities 

(3.3) 

Z{ (t) < zi4 + MS G @) dsS i=2,3 
0 

(3.4) 

where Mis a constant which depends onx and its derivatives up to third order, as well as on 
the estimates for u(s, t),q,($), via(t) in the interval IO. Tl. 

From (3.4) we obtain the inequality 

20 (4 + 2s ft) Q C+o + zd exp (wt) < (zaz, + zao) sap (MT) 



This theorem shows that waves which correspond to the second and third characteristic 

fields, behave nearly as linear and do not generate irregularities. 
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